skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Sichen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the distribution of polygonal paths joining the partial sums of normalized Kloosterman sums modulo an increasingly high power p n p^n of a fixed odd prime p p , a pure depth-aspect analogue of theorems of Kowalski–Sawin and Ricotta–Royer–Shparlinski. We find that this collection of Kloosterman paths naturally splits into finitely many disjoint ensembles, each of which converges in law as n →<#comment/> ∞<#comment/> n\to \infty to a distinct complex valued random continuous function. We further find that the random series resulting from gluing together these limits for every p p converges in law as p →<#comment/> ∞<#comment/> p\to \infty , and that paths joining partial Kloosterman sums acquire a different and universal limiting shape after a modest rearrangement of terms. As the key arithmetic input we prove, using the p p -adic method of stationary phase including highly singular cases, that complete sums of products of arbitrarily many Kloosterman sums to high prime power moduli exhibit either power savings or power alignment in shifts of arguments. 
    more » « less